On the use of standardised booths for optimal interpreting quality

An interpreter will seldom be able to ensure a satisfactory performance without having a good command of languages and appropriate training. But what about external factors, such as the standardisation of interpreting booths and other factors totally beyond the interpreter's control? What influence do they have on the performance of even the most seasoned interpreters, and what can AIIC do to help ensure satisfactory working conditions for its members (and non-members)?

Danielle GREE.
Published: December 4, 2006 Last updated: December 2, 2015

The quality of an interpreter alone is not enough to ensure high-quality interpreting. At the "Power of Language" conference held last May in Bangkok, Luigi Luccarelli, Convenor of AIIC's Communication Committee, and Barbara Moser, Convenor of the Research Committee, stressed that people are often unaware of the decisive effect of external factors (poor lighting, bad sound quality, lack of a direct view of the speakers) on the interpreting process, which in itself is complex and demanding.

What does research into the interpreter's environment tell us?

Research shows that a number of factors affect quality. It goes without saying that the complexity of the subject, the interpreter's preparation (and hence the availability of documentation), the characteristics of the speech (density, speed, coherence, emotionality, accent), the size of the team of interpreters and the workload will be crucial to the quality of the performance. But what about the other stress factor, the non-compliance of mobile or built-in booths with ISO 4043 and ISO 2603 respectively?

As indicated in the presentation [1] by Luccarelli and Moser, a workload study carried out by AIIC in 2003 showed that for 55% of the interpreters surveyed, physical conditions in booths represented the main stress factor. CO₂ levels are often unacceptable after an hour and a half; the level of humidity rapidly becomes uncomfortable after six hours, and temperature after three; air flow is insufficient in 87% of booths and fresh air supplies are inexistent; lighting is inadequate; and booth dimensions do not always comply with the standards.

What is a standardized booth?

AIIC has been working for several decades with the International Organisation for Standardization (ISO) to draft and update standards for booths. These ISO standards, which are often incorporated into national legislation, set guidelines on size (fixed booths, for example, must measure at least 2.5 metres in width by 2.3 in height by 2.4 in depth, as they will constitute the work space for two people for six to seven hours a day); accessibility and visibility (an unobstructed view of the hall and the screen); windows (anti-glare); sound proofing; cables (built-in); air conditioning and lighting
(separate to those of the conference hall); working surface dimensions (large enough to take notes and manage documents); consoles, and even chairs.

Although some conference centres have made the effort to ensure that booths are built to standard (an excellent selling point), compliant booths are relatively rare. About the only facilities that fully comply with the standards are those of the EU institutions, particularly those of the Commission, Council, Parliament, Court of Justice, etc., buildings in Brussels, Strasbourg and Luxembourg, and some at the UN Palais des Nations in Geneva.

Unfortunately, spacious, well-ventilated, well-lit booths with anti-glare windows that provide a good view of the hall represent a minority. Even the greatest architects seem to derive a perverse pleasure from ignoring the ISO standards during the construction of fixed booths and generally tend to put aesthetics before practicality. Here are some illustrations taken at random from conferences.

Examples of failures (to be avoided)

Visibility is often the main problem in fixed booths that are located along the side of a meeting room or behind the podium pointing towards the back of the room, preventing interpreters from seeing the screen or the rostrum, or set so high up that interpreters are forced to use binoculars to decipher the name of the drug that has, of course, been muttered by the cancer specialist and that all the participants are able to read clearly on the screen.

Although the Pierre Baudis Convention Centre in Toulouse boasts, for example, a large auditorium with relatively comfortable booths, it has another smaller hall that is an example of the architect's totally useless creative flair! The architect decided to use staggered glass panels for the booths, with the result that the interpreters' view is obstructed and they cannot follow debates occurring on stage.
(photo). It looks delightful from below, but it keeps the interpreters from reading the slides, among other things. Just a minor detail.

Likewise, the Lutfi Kirdar Congress Centre in Istanbul had two halls, the Anadolu and the Rumeli, in which huge columns towered inconveniently in front of the booth windows, forcing interpreters to contort themselves into all kinds of positions in an effort to see speakers and screen. With no monitors available to offset these structural problems, the interpreters were constantly on their feet and leaning over to peer down, as the photo illustrates. Fortunately, our Turkish colleagues inform us, in an adjoining article, that management, having been made aware of the problems, has decided to standardize the booths (which, unfortunately, will end up costing far more than it would have had they applied ISO 2603 from the outset!).

Istanbul (Lutfi Kirdar Centre)

A team recently inaugurated the magnificent Documentation and Research Centre in Abu Dhabi, the architects of which surpassed themselves in imagination and originality. This also applied to the booths, which, as well as being small and fitted with minuscule windows (the designers apparently saw no point in interpreters being able to see as well as hear), were equipped with a light switch that, when turned off to be able to see something other than one's own reflection in the window, plunged
the entire conference hall into darkness. You will agree that this is not exactly discreet.

Documentation and Research Centre

It would appear that even the greatest architects completely disregard the painstakingly devised ISO standards. Jean Nouvel, whose creations are otherwise unanimously acclaimed, recently completed two works which, from a booth standpoint, leave a lot to be desired.

One is the famous Agbar Tower, which has become a Barcelona landmark with its svelte form and stylish coloured panels. Nevertheless, if you are sitting in one of the booths, you might wonder whether you have actually arrived at work or are still zooming along in your convertible. The location of the air conditioner/fan between the window (no anti-glare glass here!) and the desk means that your hair is blown about in the wind as you interpret (and start to incubate a cold) whilst deeply absorbed in contemplating your own reflection. Not exactly conducive to concentration!
Jean Nouvel booth

The other major work by Jean Nouvel is the Musée du Quai Branly in Paris, the superb museum of indigenous art. It sees itself as part ethnographic museum and part research centre, and the interpreting booths are a lofty combination of henhouse and mousetrap. Indeed, in order to reach them (no lift here), you have to climb three flights of stairs (exasperating our colleagues in wheelchairs), and if a fire were to break out, jumping would appear to be the only way out. One would hope that the problem will be solved quickly, and AIIC has already contacted the management to discuss it.

Musée du Quai Branly

It follows from this brief overview that, although ISO standards on interpreting booths are essential, extensive outreach work needs to be done with architecture schools and architects to raise awareness and foment the systematic incorporation of ISO 2603 during the design stage. They would thus spare their clients the costly but necessary process of bringing booths into compliance at a later date.

Recommended citation format: